17 maja, 2024

Świat Biotworzyw

Informacje o Polsce. Wybierz tematy, o których chcesz dowiedzieć się więcej

Naukowcy tworzą kryształy, które wytwarzają energię elektryczną z ciepła

Wcześniejsze urządzenia termoelektryczne wykorzystywały drogie i toksyczne elementy. Naukowcy stworzyli teraz niedrogie kryształy składające się z miedzi, manganu, germanu i siarki, które mogą wydajnie przekształcać ciepło w energię elektryczną.

Syntetyczny minerał siarczkowy o właściwościach termoelektrycznych.

Dążąc do efektywnego przekształcania ciepła w energię elektryczną, łatwo dostępne materiały z nieszkodliwych surowców otwierają nowe horyzonty w rozwoju tak zwanych bezpiecznych i niedrogich materiałów termoelektrycznych. Według badań opublikowanych niedawno w czasopiśmie, syntetyczna miedź metaliczna uzyskuje złożoną strukturę i mikrostrukturę poprzez proste zmiany w swoim składzie, kładąc w ten sposób podwaliny pod pożądane właściwości. Anguandt Kimi.

Nowy materiał syntetyczny jest wykonany z miedzi, manganu, germanu i siarki i jest wytwarzany w dość prostym procesie, wyjaśnia materiałoznawca Emmanuel Gilmou, badacz CNRS w laboratorium CRISMAT w Caen we Francji i autor badania. . „Proszki są mechanicznie mieszane przez mielenie kulowe, aby utworzyć fazę wstępnej krystalizacji, która jest następnie kondensowana pod kątem 600 stopni.[{” attribute=””>Celsius. This process can be easily scaled up,” he says.

Thermoelectric materials convert heat to electricity. This is especially useful in industrial processes where waste heat is reused as valuable electric power. The converse approach is the cooling of electronic parts, for example, in smartphones or cars. Materials used in these kinds of applications have to be not only efficient, but also inexpensive and, above all, safe for health.

However, thermoelectric devices used to date make use of expensive and toxic elements such as lead and tellurium, which offer the best conversion efficiency. To find safer alternatives, Emmanuel Guilmeau and his team have turned to derivatives of natural copper-based sulfide minerals. These mineral derivatives are mainly composed of nontoxic and abundant elements, and some of them have thermoelectric properties.

Now, the team has succeeded in producing a series of thermoelectric materials showing two crystal structures within the same material. “We were very surprised at the result. Usually, slightly changing the composition has little effect on the structure in this class of materials,” says Emmanuel Guilmeau describing their discovery.

The team found that replacing a small fraction of the manganese with copper produced complex microstructures with interconnected nanodomains, defects, and coherent interfaces, which affected the material’s transport properties for electrons and heat.

Emmanuel Guilmeau says that the novel material produced is stable up to 400 degrees Celsius (750 degrees Fahrenheit), a range well within the waste heat temperature range of most industries. He is convinced that, based on this discovery, novel cheaper, and nontoxic thermoelectric materials could be designed to replace more problematic materials.

Reference: “Engineering Transport Properties in Interconnected Enargite-Stannite Type Cu2+xMn1−xGeS4 Nanocomposites” by Dr. V. Pavan Kumar, S. Passuti, Dr. B. Zhang, Dr. S. Fujii, K. Yoshizawa, Dr. P. Boullay, Dr. S. Le Tonquesse, Dr. C. Prestipino, Prof. B. Raveau, Prof. P. Lemoine, Dr. A. Paecklar, Dr. N. Barrier, Prof. X. Zhou, Prof. M. Yoshiya, Dr. K. Suekuni, Dr. E. Guilmeau, 13 September 2022, Angewandte Chemie International Edition.
DOI: 10.1002/anie.202210600

Funding: Agence Nationale de la Recherche, Horizon 2020 Framework Programme, Japan Society for the Promotion of Science

READ  Inżynierowie MIT znajdują sposób na oszczędzanie energii i sprawniejsze gotowanie wody