Tkanina wszechświata, jak ją obecnie rozumiemy, składa się z trzech podstawowych składników: „zwykłej materii”, „ciemnej energii” i „ciemnej materii”. Jednak nowe badania wywracają ten ustalony model do góry nogami.
Niedawne badanie przeprowadzone przez Uniwersytet w Ottawie Dostarcza przekonujących dowodów, które podważają tradycyjny model Wszechświata, sugerując, że może nie być w nim miejsca na ciemną materię.
Trzon nowego modelu CCC+TL
Ciemna materia, termin używany w kosmologii, odnosi się do nieuchwytnej materii, która nie oddziałuje ze światłem ani polami elektromagnetycznymi i można ją zidentyfikować jedynie na podstawie efektów grawitacyjnych.
Pomimo swojej tajemniczej natury, ciemna materia jest kluczowym elementem wyjaśniającym zachowanie galaktyk, gwiazd i planet.
U podstaw tych badań leży… Rajendrę Guptę, wybitny profesor fizyki w Wyższej Szkole Nauk. Innowacyjne podejście Gupty polega na integracji dwóch modeli teoretycznych: zmiennych stałych sprzężenia (CCC) i „zmęczone światło” (lira turecka), zwane łącznie modelem CCC+TL.
Model ten bada koncepcję, zgodnie z którą siły natury maleją w czasie kosmicznym, a światło traci swoją energię na ogromnych dystansach.
Teoria ta została dokładnie przetestowana i jest zgodna z różnymi obserwacjami astronomicznymi, w tym z rozmieszczeniem galaktyk i ewolucją światła z wczesnego Wszechświata.
Konsekwencje wszechświata bez ciemnej materii
Odkrycie to podważa tradycyjne rozumienie, że ciemna materia stanowi około 27% Wszechświata, zwykła materia stanowi mniej niż 5%, a reszta to ciemna energia, jednocześnie na nowo definiując nasz pogląd na wiek i ekspansję Wszechświata.
„Wyniki badania potwierdzają nasze wcześniejsze prace, które sugerowały, że Wszechświat ma 26,7 miliarda lat, co zaprzecza konieczności istnienia ciemnej materii” – wyjaśnia Gupta.
Kontynuował: „Wbrew standardowym teoriom kosmologicznym, które przypisują przyspieszającą ekspansję Wszechświata ciemnej energii, nasze odkrycia wskazują, że ekspansja ta jest spowodowana słabymi siłami natury, a nie ciemną energią”.
Nauka stojąca za odkryciem Gupty
Integralną częścią badań Gupty jest analiza „Przesunięcia ku czerwieni„, zjawisko polegające na przesuwaniu się światła w kierunku czerwonej części widma.
Badając dane dotyczące rozmieszczenia galaktyk przy małych przesunięciach ku czerwieni i wielkości kątowej horyzontu akustycznego przy dużych przesunięciach ku czerwieni, Gupta przedstawia przekonujący argument przeciwko istnieniu ciemnej materii, pozostając jednocześnie zgodnym z kluczowymi obserwacjami kosmologicznymi.
„Istnieje wiele artykułów kwestionujących istnienie ciemnej materii, ale według mojej wiedzy moja praca jest pierwszą, która wyklucza jej kosmologiczne istnienie, a jednocześnie jest spójna z głównymi obserwacjami kosmologicznymi, które mieliśmy czas potwierdzić” – podsumowuje Gupta z pewnością .
Implikacje i przyszłe kierunki
Krótko mówiąc, innowacyjne badania Rajendry Gupty zasadniczo podważają dominujący model kosmologiczny, proponując wszechświat bez potrzeby stosowania ciemnej materii.
Uwzględniając zmienne stałe sprzężenia i przestarzałe teorie światła, Gupta nie tylko kwestionuje konwencjonalne rozumienie struktury kosmicznej, ale także oferuje nową perspektywę na ekspansję i wiek wszechświata.
To kluczowe badanie wzywa społeczność naukową do ponownego rozważenia utrwalonych przekonań na temat ciemnej materii i oferuje nowe, ekscytujące sposoby zrozumienia podstawowych sił i właściwości wszechświata.
Dzięki starannej analizie i odważnemu podejściu praca Gupty stanowi ważny krok naprzód w naszym dążeniu do odkrycia tajemnic wszechświata.
Więcej o ciemnej materii
Jak omówiono powyżej, ciemna materia pozostaje jednym z najbardziej tajemniczych aspektów naszego wszechświata. Pomimo tego, że jest niewidzialna i nie emituje, nie absorbuje ani nie odbija światła, ciemna materia odgrywa kluczową rolę we wszechświecie.
Wielu naukowców, choć z pewnością nie Rajendra Gupta, wnioskuje o jego istnieniu na podstawie efektów grawitacyjnych, jakie wywiera na materię widzialną, promieniowanie i wielkoskalową strukturę wszechświata.
Podstawy teorii ciemnej materii
Teoria ciemnej materii zrodziła się z rozbieżności pomiędzy obserwowaną masą dużych obiektów astronomicznych a ich masą obliczoną na podstawie ich efektów grawitacyjnych.
W latach trzydziestych XX wieku astronom Fritz Zwicky był jednym z pierwszych, którzy zasugerowali, że niewidzialna materia może wyjaśnić „brakującą” masę we wszechświecie. Grupa śpiączki Z galaktyk.
Od tego czasu stale przybywa dowodów, w tym krzywe rotacji galaktyk, które wskazują na obecność znacznie większej masy, niż można wytłumaczyć samą widzialną materią.
rolę we wszechświecie
Uważa się, że ciemna materia stanowi około 27% całkowitej masy i energii Wszechświata. W przeciwieństwie do zwykłej materii, ciemna materia nie oddziałuje z siłą elektromagnetyczną, co oznacza, że nie absorbuje, nie odbija ani nie emituje światła, co sprawia, że jest niezwykle trudna do bezpośredniego wykrycia.
O jego istnieniu wnioskuje się na podstawie wpływu grawitacji na materię widzialną, załamania światła (soczewkowanie grawitacyjne) i jego wpływu na kosmiczne mikrofalowe promieniowanie tła.
Poszukiwanie jest nieuchwytne
Naukowcy opracowali kilka innowacyjnych sposobów pośredniego wykrywania ciemnej materii. Eksperymenty takie jak te przeprowadzane z podziemnymi detektorami cząstek i teleskopami kosmicznymi mają na celu obserwację produktów ubocznych interakcji lub anihilacji ciemnej materii.
Wielki Zderzacz Hadronów (LHC) w CERN poszukuje również śladów cząstek ciemnej materii w zderzeniach cząstek o wysokiej energii. Pomimo tych wysiłków ciemna materia nie została jeszcze bezpośrednio wykryta, co czyni ją jednym z najważniejszych wyzwań współczesnej fizyki.
Przyszłość badań ciemnej materii
Dążenie do zrozumienia ciemnej materii w dalszym ciągu napędza postęp w astrofizyce i fizyce cząstek elementarnych. Przyszłe obserwacje i eksperymenty mogą ujawnić naturę ciemnej materii, rzucając światło na tę kosmiczną tajemnicę.
W miarę postępu technologii mamy nadzieję na bezpośrednie wykrycie cząstek ciemnej materii lub znalezienie nowych dowodów, które potwierdzą lub podważą nasze obecne teorie na temat powstawania Wszechświata.
W swej istocie teoria ciemnej materii podkreśla nasze dążenie do zrozumienia rozległych, niewidzialnych składników Wszechświata. Ich rozwiązanie może zrewolucjonizować nasze rozumienie wszechświata, od najmniejszych cząstek po największe struktury we wszechświecie.
Więcej o modelu CCC+TL
Jak wspomniano powyżej, jako kluczowy element badań Gupty, dwie interesujące koncepcje: zmienne stałe sprzężenia (CCC) i model „zmęczonego światła” (TL) pobudziły wyobraźnię naukowców i astronomów. Niedawno te dwie teorie zostały połączone w nowy model znany jako model CCC+TL.
Podstawy CCC+TL
Zmienne stałe sprzężenia (CCC)
Teoria zmiennych niezmienników sprzężenia zakłada, że podstawowe stałe natury, które określają intensywność sił pomiędzy cząstkami, nie są stałe, ale zmieniają się w całym wszechświecie.
Ta różnica może mieć głęboki wpływ na znane nam prawa fizyki, wpływając na wszystko, od struktur atomowych po zachowanie galaktyk.
Model „zmęczonego światła” (TL).
Z drugiej strony model „zmęczonego światła” dostarcza radykalnego wyjaśnienia obserwowanego przesunięcia ku czerwieni w świetle odległych galaktyk.
Zamiast przypisywać to przesunięcie ku czerwieni ekspansji Wszechświata, jak ma to miejsce w teorii Wielkiego Wybuchu, model TL zakłada, że światło podczas podróży w przestrzeni traci energię – i w ten sposób jest pochylone w stronę czerwonego końca widma.
Ta utrata energii może wynikać z interakcji z cząsteczkami lub polami, powodując „zmęczenie” światła na duże odległości.
Połącz CCC i TL
Model CCC+TL stanowi ambitną próbę zintegrowania tych dwóch teorii w spójną strukturę. Czyniąc to, ma na celu zapewnienie nowego wglądu w zachowanie wszechświata w dużych skalach i ogromnych skalach czasowych.
Implikacje dla kosmologii
Połączenie CCC i TL w jeden model ma daleko idące implikacje dla kosmologii. Podważa tradycyjne rozumienie kosmicznej ekspansji i stałości praw fizycznych we wszechświecie.
Jeśli model CCC+TL jest poprawny, może to prowadzić do zmiany paradygmatu w wyjaśnianiu zjawisk kosmicznych, począwszy od kosmicznego mikrofalowego promieniowania tła po powstawanie i ewolucję galaktyk.
Potencjalne wyzwania i krytyka
Jak każda przełomowa teoria, model CCC+TL spotyka się ze sceptycyzmem i wyzwaniami ze strony społeczności naukowej. Krytycy argumentują, że istnieją mocne dowody potwierdzające stałość stałych fizycznych i ekspansję wszechświata zgodnie z modelem Wielkiego Wybuchu.
Ponadto model CCC+TL musi borykać się z brakiem bezpośrednich dowodów obserwacyjnych na zmienione stałe sprzężenia lub mechanizmy leżące u podstaw „zmęczonego światła”.
Perspektywy na przyszłość i badania nad CCC+TL
Pomimo tych wyzwań model CCC+TL otwiera nowe możliwości badań i eksploracji. Naukowcy badają teoretyczne podstawy modelu, a także projektują eksperymenty i obserwacje w celu sprawdzenia jego przewidywań.
Szukaj dowodów
Głównym celem jest identyfikacja dowodów eksperymentalnych, które mogą potwierdzić lub obalić stałe zmienne i mechanizmy utraty energii zaproponowane przez model.
Obejmuje to precyzyjne pomiary kosmicznego mikrofalowego tła, badania odległych supernowych i poszukiwania różnic w podstawowych stałych w różnych regionach Wszechświata.
Rola zaawansowanej technologii w CCC+TL
Postęp technologiczny, szczególnie w zakresie teleskopów i detektorów, odgrywa kluczową rolę w testowaniu modelu CCC+TL.
Instrumenty te umożliwiają astronomom obserwację Wszechświata z niespotykaną dotąd szczegółowością i czułością, potencjalnie odkrywając zjawiska, które mogą wspierać lub kwestionować model.
Krótko mówiąc, model CCC+TL stanowi odważne skrzyżowanie dwóch niekonwencjonalnych teorii, zapewniając nowe spojrzenie na działanie wszechświata.
Choć stoi przed poważnymi wyzwaniami, jego eksploracja jest świadectwem dynamicznego i stale ewoluującego charakteru badań kosmologicznych.
W miarę udoskonalania naszych narzędzi i zrozumienia, poprawi się także nasze zrozumienie głębszych tajemnic wszechświata, być może dzięki modelowi CCC+TL wskażącemu drogę.
Pełne badanie opublikowano w Dziennik astrofizyczny.
—–
Podoba Ci się to, co przeczytałem? Zapisz się do naszego newslettera, aby otrzymywać ciekawe artykuły, ekskluzywne treści i najnowsze aktualizacje.
Odwiedź nas w EarthSnap, bezpłatnej aplikacji udostępnionej przez Erica Rallsa i Earth.com.
—–
More Stories
Kiedy astronauci wystartują?
Podróż miliardera w kosmos jest „ryzykowna”
Identyczne ślady dinozaurów odkryto na dwóch kontynentach